Внеземные минералы: как российские химики раскрывают тайны планет
© Artem OganovКомпьютерная модель молекулы невозможной соли NaCl3
. Профессор Сколтеха, член Европейской академии наук и профессор РАН Артем Оганов рассказал о том, как новые достижения в области теоретической химии и физики помогают ученым разгадывать секреты рождения нашей планеты и других миров, почему он готов заниматься практическими разработками, и объяснил, что нужно для лидерства отечественной науки в мире.
Артем Оганов — один из самых известных российских химиков. Его лаборатория открыла десятки экзотических веществ, в том числе «невозможные» соединения гелия, прозрачный натрий, сверхтвердый бор, новые хлориды натрия и калия, ряд соединений, которые могут существовать в недрах Земли и других планет, а также несколько интереснейших новых материалов. Алгоритм USPEX, созданный Огановым, сегодня применяется сотнями научных групп по всему миру для предсказания новых материалов.
Помимо научной деятельности, профессор Оганов занимается и просветительством. Недавно в Российском научном фонде в Москве под его руководством была проведена занимательная викторина «Открытая лаборатория». На этом мероприятии «завлабы» и их подопечные, которыми могли стать любые желающие, пытались найти правильные ответы на вопросы научной викторины, придуманные ведущими учеными и популяризаторами науки.
Примерно полтора года назад китайские и американские ученые опубликовали статью в журнале Nature, в которой они предсказали, используя USPEX, что при повышенных давлениях в недрах Земли будет формироваться новый оксид железа FeO2. Получив этот теоретический результат, они проверили его экспериментально и доказали, что нечто похожее действительно может происходить. Дальше начался полет фантазии — и хотя в чем-то фантазия этих ученых подвела, вполне возможно, что такого рода соединения сыграли большую роль в образовании Земли.
На самом деле ученым полезно фантазировать — без фантазии они уже не ученые, а ремесленники. В данном случае мечты наших коллег обрисовали крайне необычную вещь, связывающую процессы в недрах Земли с эволюцией жизни и колебаниями в концентрации кислорода в атмосфере.
Первая идея этих исследователей была такова. Холодная литосфера Земли, как известно, погружается в мантию, а горячие потоки мантийного вещества компенсируют это, восходя к поверхности планеты. В тех породах, которые подобным образом «тонут» в мантии, может присутствовать гидроксид железа — обычная ржавчина.
Как посчитали наши китайские коллеги, это вещество могло распадаться по мере путешествия к недрам Земли, формируя экзотическую двуокись железа. Это соединение устойчиво только при высоких давлениях, и при возвращении на поверхность Земли оно должно распадаться, выделяя кислород.
Несколько десятилетий назад Марвин Росс высказал красивую гипотезу: метан, в большом количестве присутствующий в толще жидкого Нептуна (эта планета целиком или почти целиком газово-жидкая), при высоких давлениях может распадаться с образованием алмаза. Его кристаллики, обладая более высокой плотностью, чем окружающий их «суп» из углеводородов, воды, аммиака, будут тонуть, двигаясь в сторону твердого ядра планеты.
Это движение будет разогревать Нептун за счет трения падающих кристаллов о жидкость. Учитывая, что около трети объема Нептуна составляет метан, нетрудно представить, какая масса алмазов может присутствовать внутри Нептуна! Эксперименты показывали, что метан действительно может распадаться с образованием алмаза, однако в недрах Нептуна содержатся и другие вещества, такие как вода и аммиак, которые могут привести к образованию совсем других соединений — но что именно происходит, пока не вполне ясно.
— Предсказание материалов с заданными свойствами — как раз то, чем занимается моя лаборатория, и это имеет большой прикладной потенциал. Сейчас, к примеру, мы ищем материалы с наилучшими магнитными свойствами. Постоянные магниты, изготовленные из подобных веществ, могли бы улучшить работу монорельсовых железных дорог, а также удешевить ветряные электростанции и быть полезными в других технологиях.
Помимо этого, мы разрабатываем термоэлектрические материалы, способные преобразовывать тепловое излучение в электрический ток. Подобные вещества давно известны нам, однако из-за свойств существующих материалов для них характерен крайне низкий КПД. Если его удастся удвоить или утроить, многие системы генерации электричества станут не просто рентабельными — они совершат революцию в энергетике.
Представьте себе, что мы сможем улавливать тепло, которое автомобили или электростанции выбрасывают в окружающую среду, и превращать его в электричество.
— Военными исследованиями я не занимаюсь. Когда я жил в Америке, я довольно много сотрудничал с DARPA, агентством передовых оборонных исследований и руководил многомиллионными проектами, но все эти проекты были гражданскими, в этом отношении я достаточно щепетилен. Даже сейчас, уехав из США, я сотрудничаю с коллегами по гранту военного ведомства, предсказываю новые высокотемпературные сверхпроводники, которые образуются под высоким давлением. Это интересная фундаментальная тема, но без шансов найти практическое применение.
Хочу подчеркнуть, что я пацифист, я не люблю войну и в особенности — американскую военную машину. Миру нужен баланс: либо все отказываются от оружия, либо Америку, вооруженную до зубов, должны уравновешивать одно или два государства с аналогичным арсеналом. Так что я, хоть и пацифист, хорошо отношусь к российским военным исследованиям, но сам в них еще никогда не участвовал.
— Одно из двух предсказанных нами веществ, Na2He, уже было получено в лаборатории моего коллеги Александра Гончарова, который сейчас работает в США, а второе соединение, Na2HeO, пока еще не пытались синтезировать. Мы провели детальные исследования Na2He, природы химической связи в нем, его устойчивости и других свойств, и экспериментальные данные полностью подтвердили наши предсказания.
Это очень интересное соединение, которое относится к классу электридов — особых веществ, обладающих кубической структурой, часть пустот в которых занимают не ионы или атомы, а локализованные электронные пары.
Данные электронные пары ведут себя как некий атом, заряженный отрицательно, что придает им множество любопытных свойств, связанных с тем, как взаимодействуют эти «атомы» с соседями. К примеру, эти пары электронов легко выбивать с того места, где они находятся, что позволяет использовать их в качестве сверхчувствительных датчиков света, катализаторов и восстановителей.
После распада Советского Союза Россия стала бедной страной, ученых и науку здесь заморили голодом. Многие ученые, даже те, кто не хотел никуда уезжать, были вынуждены перебраться за рубеж просто ради того, чтобы выжить и в профессиональном, и в физическом плане.
Сейчас ученые, хотя и достаточно медленно, начали возвращаться, и система плавно приходит в некое равновесие. Что нужно для ее дальнейшего развития? Во-первых, стабильность общества. Революции, гражданские войны и прочие события такого рода — самое худшее, что может произойти. Люди ведь бегут не только от голода — насилие и неопределенность тоже заставляют их покинуть свою родину. Когда страну лихорадит, наука просто не может развиваться.
К примеру, революция во Франции происходила под лозунгом «Свобода, равенство, братство!», но что же французы получили? Гильотины, а потом и жесточайшую диктатуру Наполеона, который уничтожил свободу прессы, выслал всех недовольных и залил всю Европу кровью. После падения его режима вернулись короли, потом была серия революций и переворотов, и целый век Франция не могла прийти в себя. Мне кажется, подобная плата за прогресс слишком высока.
Нечто похожее произошло и в России в 1917 году — сколько людей вынужденно покинули страну, умерли от голода или в тюрьмах. Потом было еще хуже — все то хорошее, что успели создать в Советском Союзе, добровольно выбросили на свалку истории, и возникла страна олигархов и бандитов 1990-х.
Сейчас общество постепенно стабилизируется, есть много проблем и несправедливости. Но это не значит, что мы обязаны выйти на улицу, все разломать и еще сто лет жить в условиях безудержной вакханалии зла и насилия.
Я просто не могу принять эту логику и считаю, что общество должно стать стабильным и каждый его член должен заниматься своим делом. Фермеры — фермерством, промышленники — производством, правительство и фонды должны спонсировать ученых, ученые — заниматься наукой, а пресса — грамотно и интересно писать о ней. Подобное эволюционное развитие поможет нам приблизиться к созданию если не полностью справедливого общества, то чего-то близкого к нему.
— Мне кажется, что Академию наук нужно реформировать по двум простым причинам. Во-первых, в ее составе много посредственных ученых, и это само по себе говорит о том, что система отбора в РАН не работает — личные связи оказываются более важными, чем компетентность и профессиональные заслуги. Это подрывает авторитет и экспертную функцию Академии наук.
Во-вторых, посмотрите на возрастную структуру РАН — на ее верхушке слишком много 80-летних академиков. Подчеркну: возраст не означает, что человека надо списывать, однако мы должны помнить, что наука — это дело молодых. Академия наук этого не понимает, и сейчас она потеряла доверие не только у власти и общества — но и в профессиональном сообществе, что абсолютно ненормально.
Академики должны быть эталоном настоящих ученых, совершающих открытия, а не собранием людей, забывших о науке и назначающих своими «наследниками» детей, племянников и знакомых. Такую систему нужно реформировать, очищать, но это будет непросто.
Я очень надеюсь, что Александр Сергеев, нынешний президент РАН, справится с этой задачей. Как мне кажется, он сможет ее решить, и я не один, кто так думает — его поддерживает президент, а бюджет академии был увеличен. Мне хотелось бы верить, что Сергеев оправдает это доверие.
Источник: ria.ru