Физики нашли внутри протонов самую плотную форму материи во Вселенной

© DOE’s Jefferson LabТак художник представил себе протон и кварки внутри него

Подпишись на ежедневную рассылку РИА Наука

Спасибо за подписку

Пожалуйста, проверьте свой e-mail для подтверждения подписки

Протоны оказались самой плотной формой материи во Вселенной – давление внутри них, как показывают замеры американских ученых, примерно в 10 раз выше, чем в центре нейтронных звезд. Их выводы были опубликованы в журнале Nature.

«Мы нашли область экстремально высокого давления в центре протона, которая стремится вырваться наружу, и чуть более слабую и протяженную область, которая стремится обвалиться в сторону центра частицы,  в ее периферийной части», — рассказывает Фолькер Буркерт (Volker Burkert) из Национальной ускорительной лаборатории имени Джефферсона в Ньюпорте (США).

По современным представлениям, все элементарные частицы состоят из небольших объектов, которые физики называют кварками и глюонами. Протоны, нейтроны и прочие «тяжелые» частицы, называемые барионами, содержат в себе три кварка. Их меньшие собратья, так называемые мезоны, содержат в себе два элемента – «обычный» кварк и антикварк, базовую составляющую антиматерии.

Кварки связаны между собой мощнейшими силами природы, так называемыми сильными ядерными взаимодействиями. Поэтому в чистом виде они не существуют, и для их «освобождения» необходимы гигантские температуры и энергии, которые существовали только в момент Большого взрыва. По этой причине свойства кварков и глюонов ученые изучают, создавая подобные условия на БАК и других мощных коллайдерах.

Этот феномен, который физики называют «конфайнментом» кварков, сегодня остается главным препятствием для изучения структуры элементарных частиц и поисков ответов на множество «главных вопросов» физики – к примеру, как родилась Вселенная и почему в ней нет антиматерии. Более того, остается непонятным и то, как работают сами сильные ядерные взаимодействия.

Долгое время, как отмечает Буркерт, ученые считали, что внутрь частиц нельзя заглянуть, не разрушая их, так как скрепляющие их взаимодействия в сотни и миллионы раз сильнее, чем гравитация или электромагнетизм, две других фундаментальных силы.

Американские физики нашли способ обойти эту проблему, используя две относительно новые теории, сформулированные Хайнцом Пагельсом и Ричардом Фейнманом в 1960 годах. Первая из них описывает то, как гравитоны, пока еще открытые переносчики гравитации, взаимодействуют с протонами и «уносят» с собой информацию об их структуре. Вторая, в свою очередь, объясняет то, как кварки внутри элементарных частиц влияют на то, в какую сторону те отталкивают пучки электронов, сталкивающиеся с ними.

Как обнаружили Буркерт и его коллеги, обе эти теории были связаны друг с другом, что позволило им составить первую «карту» недр протона, обстреливая сосуд с жидким водородом пучком электронов высокой энергии.

Когда электрон сталкивается с протоном, он передает часть своей кинетической энергии одному из кварков, используя виртуальный фотон, не существующий в реальности. Этот кварк, в свою очередь, выбрасывает в окружающую среду уже настоящую  частицу света, чьи свойства будут зависеть от внутренней структуры протона.

Замеряя эти свойства фотонов и то, в какие стороны разлетелись протон и электрон, ученые смогли выяснить, как распределены источники сильных взаимодействий по протону и измерить давление, которое они порождают. Оно составляет фантастические 10 в 35 степени паскаль, что на порядок выше, чем давление в центре самых плотных объектов Вселенной – нейтронных звезд.

В ближайшее время Буркерт и его коллеги планируют «обстрелять» протоны электронами более высоких энергий, что позволит им повысить точность замеров и узнать некоторые другие их свойства, в том числе измерить точные размеры частицы и понять, почему данные по их радиусу, полученные разными способами, существенно расходятся.

Источник: ria.ru

Оставить ответ

*